Real time face detection

Real Time Face Detection Using OpenCV & python

In this post i wanted to share face detection using  using Haar cascades in OpenCV and Python


 

Haar Cascade is a machine learning object detection algorithm used to identify objects in an image or video and based on the concept of ​​ features.

-First install OpenCV library using command 

                               pip install opencv-python                                          


- You need to download Haa cascade XML (haarcascade_frontalface_default.xml ) which is available on OpenCv’s GitHub repository

- we can detect faces in videos. As you know videos are basically made up of frames, which are still images. So we perform the face detection for each frame in a video. Here is the code:


import cv2
# Load the cascade
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# To capture video from webcam.
cap = cv2.VideoCapture(0)
# To use a video file as input
# cap = cv2.VideoCapture('filename.mp4')
while True:
# Read the frame
_, img = cap.read()
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect the faces
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
# Draw the rectangle around each face
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
# Display
cv2.imshow('img', img)
# Stop if escape key is pressed
k = cv2.waitKey(30) & 0xff
if k==27:
break
# Release the VideoCapture object
cap.release()

Comments